First operation of a harmonic lasing self-seeded free electron laser

نویسندگان

  • E. A. Schneidmiller
  • B. Faatz
  • M. V. Yurkov
چکیده

Harmonic lasing is a possible mode of operation of X-ray FEL user facilities that allows us to provide brilliant beams of higher energy photons for user experiments. Another useful application of harmonic lasing is the so-called harmonic lasing self-seeded free electron laser (HLSS FEL) that allows the improvement of spectral brightness of these facilities. In the past, harmonic lasing has been demonstrated in the FEL oscillators in infrared and visible wavelength ranges, but not in high-gain FELs and not at short wavelengths. In this paper we report on the first evidence of the harmonic lasing and the first operation of the HLSS FEL at the soft X-ray FEL user facility FLASH in the wavelength range between 4.5 nm and 15 nm. Spectral brightness was improved in comparison with self-amplified spontaneous emission (SASE) FEL by a factor of six in the exponential gain regime. A better performance of HLSS FEL with respect to SASE FEL in the post-saturation regime with a tapered undulator was observed as well. The first demonstration of harmonic lasing in a high-gain FEL and at short wavelengths paves the way for a variety of applications of this new operation mode in X-ray FELs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures.

Removal of the undesired time-energy correlations in the electron beam is of paramount importance for efficient lasing of a high-gain free-electron laser. Recently, it has been theoretically and experimentally demonstrated that the longitudinal wakefield excited by the electrons themselves in a corrugated structure allows for precise control of the electron beam phase space. In this Letter, we ...

متن کامل

First lasing of a high-gain harmonic generation free- electron laser experiment

We report on the "rst lasing of a high-gain harmonic generation (HGHG) free-electron laser (FEL). The experiment was conducted at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). This is a BNL experiment in collaboration with the Advanced Photon Source (APS) at Argonne National Laboratory. A preliminary measurement gives a high-gain harmonic generation (HGHG) pulse e...

متن کامل

First SASE and seeded FEL lasing of the NSLS DUV FEL at 266 and 400 nm

The Deep Ultra-Violet Free Electron Laser (DUVFEL) at the National Synchrotron Light Source consists of a 5MeV photoinjector, a 200MeV S-band linear accelerator, a four-magnet chicane compressor and a 10m wiggler with a 3.9 cm period. The commissioning of the SDL accelerator was completed recently and it is routinely producing a highquality electron beam with a peak current of B400A and a norma...

متن کامل

High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas.

The injection of a seed in a free-electron laser (FEL) amplifier reduces the saturation length and improves the longitudinal coherence. A cascaded FEL, operating in the high-gain harmonic-generation regime, allows us to extend the beneficial effects of the seed to shorter wavelengths. We report on the first operation of a high-gain harmonic-generation free-electron laser, seeded with harmonics ...

متن کامل

Three-dimensional Simulation of a Harmonic Lasing Free-electron Laser Amplifier

Three-dimensional simulation of harmonic lasing Freeelectron laser is represented in the steady-state regime. Here, the third harmonic of the first wiggler is adjusted at the fundamental resonance of the second wiggler by reducing the magnetic field strength of the second wiggler. The hyperbolic wave equations can be transformed into parabolic diffusion equations by using the slowly varying env...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017